Disruption Tolerant Networking (DTN)

Completed Technology Project (2011 - 2019)

Project Introduction

Traditionally, space communication systems have relied on dedicated point-to-point or single-hop relay links. Such links are not always available, often have long time delays, and are limited in number. A networked communication architecture is desired to support future space missions, as networked communications significantly increase the operational flexibility and robustness of missions, as well as enable mission classes otherwise untenable. However, the terrestrial Internet protocols do not work well in highly disrupted and delayed environments, and new protocols are needed.

The goal of the AES Disruption Tolerant Networking (DTN) project is to develop and deploy a protocol suite that extends the terrestrial Internet capabilities into highly stressed data communication environments where the conventional Internet protocols do not work well. The DTN protocol suite is also being internationally standardized and will enable a Solar System Internet (SSI) architecture to support future space missions.

DTN is a suite of protocols that extends the terrestrial Internet capabilities into highly stressed data communication environments where the conventional Internet does not work well. These environments are typically subject to frequent disruptions, unidirectional links, possibly long delays, and high error rates.

The DTN protocol suite can run over the existing Internet Protocol (IP) suite or it can operate by itself as a full Internetworking protocol. DTN provides assured delivery of data using an automatic store-and-forward mechanism. The DTN suite also contains network management, security, routing, and quality-of-service mechanisms.

DTN is being standardized by the Consultative Committee for Space Data Systems (CCSDS) and the Internet Engineering Task Force (IETF), and all of the DTN protocols will be open international standards, supported by open-source software. Several DTN implementations exist and are publicly available, including NASA's Interplanetary Overlay Network (ION) implementation (http://sourceforge.net/projects/ion-dtn/).

This AES project was transferred to the NASA Human Exploration and Operations Mission Directorate (HEOMD) Space Communications and Navigation (SCaN) Program, October 2020.

Solar System Internet Concept

Table of Contents

Project Introduction	1
Anticipated Benefits	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	2
Primary U.S. Work Locations	
and Key Partners	3
Target Destinations	3
Supported Mission Type	3
Project Transitions	4
Images	4
Stories	4
Project Website:	4

Disruption Tolerant Networking (DTN)

Completed Technology Project (2011 - 2019)

Anticipated Benefits

- Improved Operations and Situational Awareness: The DTN store-and-forward mechanism along with automatic retransmission provides more insight into events during communication outages and significantly reduces the need for ground-based scheduling.
- Interoperability and Reuse: A standardized DTN protocol suite enables interoperability of multi-agency communication assets and also allows NASA to use the same communication stack for future missions (low Earth orbit, near earth objects, or deep space).
- Space Link Efficiency, Utilization and Robustness: DTN
 enables more reliable and efficient data transmissions resulting in
 more usable bandwidth. DTN also improves link reliability by
 having multiple network paths and assets for potential
 communication hops.
- **Security:** The DTN Streamlined Bundle Security Protocol (SBSP) allows for integrity checks, authentication and encryption, even on links where not previously used.
- **Quality-of-Service:** The DTN protocol suite allows for many priority levels to be set for different data types, ensuring that the most important data is received ahead of less important data.

Missions operated using an internet and automated mission communications can result in more data from spacecraft and reduced operations costs.

DTN is being standardized by the Consultative Committee for Space Data Systems (CCSDS) and the Internet Engineering Task Force (IETF), and all of the DTN protocols will be open international standards, supported by open-source software that is freely available to Industry for incorporation into their products.

DTN can be used by other agencies to enable reliable, automated, and internetworked communication in disrupted environments, potentially resulting in more data return and reduced operations costs. Other agencies may also be able to leverage NASA assets as part of the Solar System Internet.

Organizational Responsibility

Responsible Mission Directorate:

Exploration Systems
Development Mission
Directorate (ESDMD)

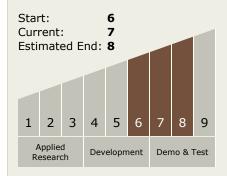
Lead Center / Facility:

Johnson Space Center (JSC)

Responsible Program:

Exploration Capabilities

Project Management


Program Director:

Christopher L Moore

Project Manager:

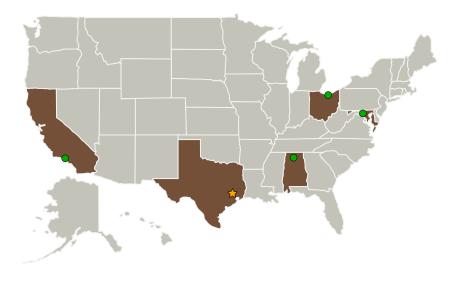
Brenda E Lyons

Technology Maturity (TRL)

Technology Areas

Primary:

Continued on following page.



Disruption Tolerant Networking (DTN)

Completed Technology Project (2011 - 2019)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
	Lead	NASA	Houston,
	Organization	Center	Texas
Glenn Research Center(GRC)	Supporting	NASA	Cleveland,
	Organization	Center	Ohio
Goddard Space Flight Center(GSFC)	Supporting	NASA	Greenbelt,
	Organization	Center	Maryland
Jet Propulsion Laboratory(JPL)	Supporting	NASA	Pasadena,
	Organization	Center	California
Johns Hopkins University Applied Physics Laboratory(JHU/APL)	Supporting Organization	R&D Center	Laurel, Maryland
Marshall Space Flight Center(MSFC)	Supporting	NASA	Huntsville,
	Organization	Center	Alabama
The MITRE Corporation	Supporting Organization	Industry	McLean, Virginia

Technology Areas (cont.)

Target Destinations

Earth, The Moon, Others Inside the Solar System

Supported Mission Type

Planned Mission (Pull)

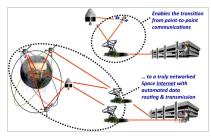
Exploration Capabilities

Disruption Tolerant Networking (DTN)

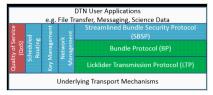
Completed Technology Project (2011 - 2019)

Primary U.S. Work Locations		
Alabama	California	
Maryland	Ohio	
Texas		

Project Transitions


October 2011: Project Start

September 2019: Closed out


Closeout Summary: This AES project was transferred to the NASA Human Exploration and Operations Mission Directorate (HEOMD) Space Communications and Navigation (SCaN) Program, October 2020.

Images

Disruption Tolerant Networking (DTN)

Disruption Tolerant Networking (DTN) (https://techport.nasa.gov/imag e/40797)

DTN Protocol Suite

DTN Protocol Suite (https://techport.nasa.gov/imag e/40799)

Solar System Internet Concept

Solar System Internet Concept (https://techport.nasa.gov/imag e/40798)

Stories

Infusion Story - DTN and International Space Station (https://techport.nasa.gov/file/62318)

Project Website:

https://www.nasa.gov/content/dtn

